首页  >  院系科研动态  >  正文
清华微纳电子系在可重构神经网络计算芯片领域取得重大进展
2017-06-09 15:04:42      毛雪鸥 [     ]

6月6日,清华大学微电子与纳电子学系(以下简称“微纳电子系”)魏少军教授团队在日本京都举办的2017超大规模集成电路国际研讨会发表了题为“面向深度学习的高能效(1.06-5.09TOPS/W)可重构混合神经网络处理器”( “A 1.06-to-5.09 TOPS/W Reconfigurable Hybrid-Neural-Network Processor for Deep Learning Applications”)的学术论文。第一作者尹首一副教授在会上详细介绍了该团队在人工智能芯片领域取得的重大进展。这是清华大学微纳电子系首次作为第一作者单位在该国际会议上发表论文。

在人工智能高速发展的今天,现有的通用计算平台(CPU、GPU和FPGA等)难以实现高能效的神经网络计算,探索新型神经网络计算芯片架构成为研究热点和学科前沿。过去几年,尹首一副教授针对这一前沿课题,领衔研究和设计了可重构多模态混合神经计算芯片(代号“Thinker”)。该芯片基于该团队长期积累的可重构计算芯片技术,采用可重构架构和电路技术,突破了神经网络计算和访存的瓶颈,实现了高能效多模态混合神经网络计算。芯片具有高能效的突出优点,其能量效率相比目前在深度学习中广泛使用的GPU提升了三个数量级,同时支持电路级编程和重构,是一个通用的神经网络计算平台,可广泛应用于机器人、无人机、智能汽车、智慧家居、安防监控和消费电子等领域。

(1)Thinker芯片的显微照片

(2)Thinker芯片的技术指标

  超大规模集成电路国际研讨会(VLSI)始于1987年,是全球先进半导体与集成电路的学术盛会,是国际微电子领域的顶级会议,与国际固态半导体电路大会 (ISSCC)和国际电子器件会议 (IEDM)并称微电子技术领域的“奥林匹克盛会”。超大规模集成电路国际研讨会只接收极具应用前景的创新性研究成果,英特尔(Intel)、IBM等公司的许多核心技术大都选择在超大规模集成电路国际研讨会国际研讨会上首次披露。(摘自清华新闻网)