首页  >  院系科研动态  >  正文
微电子所任天令教授团队首次研制出双模式晶圆级二维二硫化钼导电细丝晶体管
2019-02-15 16:26:38      毛雪鸥 [     ]

2月4日,清华大学微纳电子学系任天令教授团队在《美国化学学会纳米》 (ACS Nano)在线发表了题为《超低亚阈值摆幅,超高开关比双模式二硫化钼导电细丝晶体管》(“Two-Mode MoS2 Filament Transistor with Extremely Low Subthreshold Swing and Record High On/Off Ratio”)的研究论文,首次在埋栅双层二硫化钼(MoS2)晶体管沟道和漏极之间插入阻变层,在不同的电压条件下分别实现了超低亚阈值摆幅(模式一)和拥有超高开关比的准零维接触(模式二)。

现如今,随着摩尔定律发展,单片集成的晶体管数量越来越多,由此来带的小尺寸效应等问题更加突显,如何进一步降低晶体管亚阈值斜率摆幅来实现低功耗的亚阈值区1/0数字信号切换,增大单个晶体管开关比和开态电流来实现更好的关断特性和驱动能力,成为了研究的热点和难点。近年来新型晶体管如隧穿晶体管和负电容晶体管被研制出来以解决这一难题。与上述两类晶体管不同,本工作采用了全新的结构,创造性结合了埋栅双层二硫化钼晶体管和导电桥式随机存取存储器(CBRAM)阻变层,构建了双模式二硫化钼“导电细丝晶体管”,该晶体管可以工作在超低亚阈值斜率(模式一)和超高晶体管电流开关比(模式二)两种模式中,为上述问题提供了新的解决方案。

 

图 1. (a)二硫化钼导电细丝晶体管模式一运行示意图;(b)晶圆级导电细丝晶体管阵列;(c)导电细丝晶体管的扫描电子显微镜图;(d)模式一下晶体管源漏电流和栅极电压在不同漏极偏置下的传输曲线。

在模式一中,通过施加不同极性的漏极偏置和不同方向的栅极扫描电压,调控漏极和沟道间阻变层电场大小和方向,使得阻变层中的导电细丝导通和断裂。在其导通和断裂的瞬间,沟道电流发生突变从而实现超低的亚阈值斜率(图1a)。利用化学气相淀积生长的大面积二硫化钼薄膜使得该器件可达到晶圆级制备规模 (图1b)。其器件结构如图1c所示,在该器件中获得了2.26 mV/dec的超低亚阈值斜率(图1d)。 

图 2. (a)二硫化钼导电细丝晶体管模式II运行示意图;(b)模式二下该晶体管的栅控电流传输曲线和栅极漏电流;(c)准零维结构晶体管(模式二)和对照组传统三维接触的开态电流对比。

在模式二中,由于上述阻变层形成导电细丝的直径在亚10纳米,从而在漏电极和沟道间形成准零维接触,大大降低传统接触中电子散射现象(图2a),实现超高栅控沟道电流的开关比 (2.6×109,图2b),相比于传统电极接触二硫化钼晶体管对照组,开态电流提高了约50倍(图2c)。此外,埋栅结构的使用相较于传统背栅晶体管能进一步地增强栅控能力。同时相比于顶栅晶体管而言,绕过了在二维薄膜上生长介质材料不均匀的难题。

微纳电子系博士生王雪峰和助理教授田禾为论文共同第一作者,任天令教授及其团队教师为论文通讯作者。

任天令教授长期致力于二维材料基础研究和实用化应用的探索,尤其关注研究将二维材料与传统存储与传感器件相结合,已获得了多项创新成果,如低功耗单层石墨烯阻变存储器、石墨烯柔性阻变存储器、阻变窗口可调双层石墨烯阻变存储器等,相关成果曾多次发表于《自然通讯》(Nature Communications)、《先进材料》(Advanced Materials)、《纳米快报》(Nano Letters)、《美国化学学会纳米》(ACS Nano)、国际电子器件大会(IEDM)等。(摘自清华新闻网)

论文链接:

https://pubs.acs.org.ccindex.cn/doi/10.1021/acsnano.8b08876